∫(0→π/2) [(sint)^4-(sint)^6] dt

1个回答

  • 这里用一个公式会简单些:∫ [0--->π/2] f(sinx)dx=∫ [0--->π/2] f(cosx)dx

    ∫[0→π/2] (sin⁴t-sin⁶t) dt

    =∫[0→π/2] sin⁴t(1-sin²t) dt

    =∫[0→π/2] sin⁴tcos²t dt

    =1/2( ∫[0→π/2] sin⁴tcos²t dt+∫[0→π/2] sin²tcos⁴t dt )

    =1/2 ∫[0→π/2] sin²tcos²t(sin²t+cos²t) dt

    =1/2 ∫[0→π/2] sin²tcos²tdt

    =1/8 ∫[0→π/2] sin²2tdt

    =1/8 ∫[0→π/2] (1-cos4t)dt

    =1/8(t-1/4sin4t) [0→π/2]

    =π/16