解题思路:根据角平分线上的点到角的两边的距离相等可得DE=DF,然后利用“HL”证明Rt△AED和Rt△AFD全等,根据全等三角形对应边相等可得AE=AF,再利用等腰三角形三线合一的性质证明即可.
AD⊥EF.理由如下:
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△AED和Rt△AFD中,
∵
AD=AD
DE=DF,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD平分∠EAF,
∴AD⊥EF(等腰三角形三线合一).
点评:
本题考点: 角平分线的性质;全等三角形的判定与性质.
考点点评: 本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,熟记性质是解题的关键.