(1)若AD=AC,AP∥CD;(2) PA=6.
(1)∵PA是⊙O的切线,AD是弦,
∴∠PAD=∠ACD.
∵AD=AC,∴∠ADC=∠ACD,
∴∠PAD=∠ADC,
∴AP∥CD.
(2)∵∠EDF=∠P,又∠DEF=∠PEA,
∴△DEF
△PEA,有
=
,
即EF·EP=EA·ED.而AD、BC是⊙O的相交弦,
∴EC·EB=EA·ED,
故EC·EB=EF·EP,
∴EC=
=
=3.
由切割线定理有PA 2=PB·PC=4×(3+2+4)=36,
∴PA=6.
(1)若AD=AC,AP∥CD;(2) PA=6.
(1)∵PA是⊙O的切线,AD是弦,
∴∠PAD=∠ACD.
∵AD=AC,∴∠ADC=∠ACD,
∴∠PAD=∠ADC,
∴AP∥CD.
(2)∵∠EDF=∠P,又∠DEF=∠PEA,
∴△DEF
△PEA,有
=
,
即EF·EP=EA·ED.而AD、BC是⊙O的相交弦,
∴EC·EB=EA·ED,
故EC·EB=EF·EP,
∴EC=
=
=3.
由切割线定理有PA 2=PB·PC=4×(3+2+4)=36,
∴PA=6.