如图①,在△ABC中,∠ABC、∠ACB的平分线相交于点O.
⑴若∠A=40°,则∠BOC= 110 ° .若∠A=60°,则∠BOC= 120 ° .若∠BOC=3∠A,则∠BOC= 108 ° .(2)∠B'O'C'=180°-(∠1+∠2)=180°-(∠DB'C'+∠EC'B')/2=180°-(180°-∠A'B'C'+180°-∠A'C'B')/2=(∠A'B'C'+∠A'C'B')/2=(180°-∠A')/2=70°
(3)∠BOC+∠B'O'C'=180°
即∠BOC与∠B'O'C'互补
若∠A=∠A'=n°,∠BOC与∠B'O'C'之间仍然具有这样的关系
移动右边三角形使A', B', C'分别与A, B, C重合
∵∠OBC+∠OCB=(∠ABC+∠ACB)/2
∠O'BC+∠O'CB=(∠DBC+∠ECB)/2
∴∠OBC+∠OCB+∠O'BC+∠O'CB=(∠ABC+∠ACB+∠DBC+∠DCB)/2
又∠ABC+∠DBC=180, ∠ACB+∠ECB=180°
∴∠OBC+∠OCB+∠O'BC+∠O'CB=180°
在四边形OBO'C中,内角和为360°
∴∠BOC+∠BO'C=180°
即∠BOC+∠B'O'C'=180°只想到这点了,最后一道我也不会耶!