因为f(x)可微,
所以f(x)连续,则由
lim
x→0
f(x)
x=0,可得:
f(0)=0,f′(0)=
lim
x→0
f(x)−f(0)
x−0=0,
令t=x-u,得:
∫x0f(x−u)du=
∫x0f(t)dt,
从而:
xf′(x)+
∫x0f(x−u)du=xf′(x)+
∫x0f(t)dt
由:xf′(x)+
∫x0f(x−u)du=sin2x,
得:
f′(x)=
sin2x−
∫x0f(t)dt
x,x≠0,
∴f″(0)=
lim
x→0
f′(x)−f′(0)
x−0=
lim
x→0
sin2x−
∫x0f(t)dt
x2
=
lim
x→0
sin2x
x2−
lim
x→0
∫x0f(t)dt
x2=1−
lim
x→0
f(x)
2x=1−0=1>0,
从而:f′(0)=0,f″(0)>0,
∴f(0)是f(x)的极小值,
故选:A.