设可微函数f(x)满足limx→0f(x)x=0,xf′(x)+∫x0f(x-u)du=sin2x,则(  )

1个回答

  • 因为f(x)可微,

    所以f(x)连续,则由

    lim

    x→0

    f(x)

    x=0,可得:

    f(0)=0,f′(0)=

    lim

    x→0

    f(x)−f(0)

    x−0=0,

    令t=x-u,得:

    ∫x0f(x−u)du=

    ∫x0f(t)dt,

    从而:

    xf′(x)+

    ∫x0f(x−u)du=xf′(x)+

    ∫x0f(t)dt

    由:xf′(x)+

    ∫x0f(x−u)du=sin2x,

    得:

    f′(x)=

    sin2x−

    ∫x0f(t)dt

    x,x≠0,

    ∴f″(0)=

    lim

    x→0

    f′(x)−f′(0)

    x−0=

    lim

    x→0

    sin2x−

    ∫x0f(t)dt

    x2

    =

    lim

    x→0

    sin2x

    x2−

    lim

    x→0

    ∫x0f(t)dt

    x2=1−

    lim

    x→0

    f(x)

    2x=1−0=1>0,

    从而:f′(0)=0,f″(0)>0,

    ∴f(0)是f(x)的极小值,

    故选:A.