y=(-3x+4)/(4x-4x²)x∈(0.1)求y值域

1个回答

  • x属于(0,1)

    y=(-3x+4)/(4x-4x²)=1/4*(3x-4)/(x²-x)

    x²-x≠0,定义域,x≠0,x≠1

    y’ = 1/4*{[(x²-x)*3-(3x-4)*(2x-1)]/(x²-x)²]= 1/4*(-3x²+8x-4)/(x²-x)²=-1/4(3x-2)(x-2)/(x²-x)²

    x<2/3时,y’<0,y单调减;2/3<x<1时,y'>0,y单调增

    x=2/3时,极小值f(2/3) = (-3*2/3+4)/[4*2/3-4*(2/3)²]= 2/[8/9]=9/4

    y值域:[9/4,+无穷大)