1/3+1/15+1/35+...+1/9999
=1/3+1/3*1/5+1/5*1/7+...+1/99*1/101
=(1/2)*(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)
=(1/2)*(1-1/101)
=(1/2)*100/101
=50/101
1/3+1/15+1/35+...+1/9999
=1/3+1/3*1/5+1/5*1/7+...+1/99*1/101
=(1/2)*(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)
=(1/2)*(1-1/101)
=(1/2)*100/101
=50/101