韦达定理得tana+tanβ=-b/a=5 tana*tanβ=c/a=6/1=6
tan(a+β)=(tana+tanβ)/(1-tana*tanβ)=5/(1-6)=-1
a+β=kπ-π/4 k∈整数Z,
又因为a,β∈(0,π)所以a+β=7π/4 或a+β=3π/4
x^2-5x+6=0 x1=2 x2=3
tan(a-β)=(tana-tanβ)/(1+tana*tanβ)=±1/(1+6)=±1/7 (x1-x2=-1,x2-x1=1)
cos(a-β)=1/sec(a-β)=1/±√(sec(a-β))^2=1/±√((tan(a-β))^2+1)=±1/√((1/7)^2+1)
=±7/√50=±7√2/10