余弦定理c^2=a^2+b^2-2abcosc,变形得c^2-a^2-b^2+4ab=4ab-2abcosc
三角形面积S=1/2absinc
代入不等式得4ab-2abcosc≥4√3×1/2absinc
等价于2-cosc≥√3sinc
即1≥√3/2sinc+1/2cosc
即1≥sin(c+30)
从上到下都是等价符号连接,得证
余弦定理c^2=a^2+b^2-2abcosc,变形得c^2-a^2-b^2+4ab=4ab-2abcosc
三角形面积S=1/2absinc
代入不等式得4ab-2abcosc≥4√3×1/2absinc
等价于2-cosc≥√3sinc
即1≥√3/2sinc+1/2cosc
即1≥sin(c+30)
从上到下都是等价符号连接,得证