设A,B的坐标为(x1,0),(x2,0),且x1<x2,则x1,x2是方程ax^2+bx+c=0的两根
根据韦达定理
x1+x2=-b/a0
∵x1,x2到原点的距离都小于1,所以x1的绝对值小于1,x2绝对值小于1
∴c/a=x1x2<1,即c<a
当x=0时,y=C>0
当x=-1时,y=a-b+c>0即 a+c>b
∵a、b、c为正整数,又是求最小值
∴ 存在a+c≥b+1
a≥b+(1-c)
因为c≥1
∴a≥b---------(1)
要求a+b+c的最小值
所以c=1
∵两个不同交点,Δ=b^2-4ac>0
b^2>4a>4b
b>4 取b=5为最小值
由(1)取a=5为最小值
则a+b+c的最小值为5+5+1=11