AD=BE,BE⊥AD
证明:延长BE交AD于G
∵AC⊥BC
∴∠ACD=∠ACB=90
∴∠DAC+∠ADC=90
∵AC=BC,CE=CD
∴△ACD≌△BCE (SAS)
∴AD=BE,∠CBE=∠DAC
∴∠AGB=∠CBE+∠ADC=∠DAC+∠ADC=90
∴BE⊥AD
AD=BE,BE⊥AD
证明:延长BE交AD于G
∵AC⊥BC
∴∠ACD=∠ACB=90
∴∠DAC+∠ADC=90
∵AC=BC,CE=CD
∴△ACD≌△BCE (SAS)
∴AD=BE,∠CBE=∠DAC
∴∠AGB=∠CBE+∠ADC=∠DAC+∠ADC=90
∴BE⊥AD