由正弦定理,得:a=c*sinA/sinC,b=c*sinB/sinC
故 bcosA+acosB=c*sin(A+B)/sinC=2
由A+B+C=180得:sin(A+B)=sinC,代入上式,得:c=2
由余弦定理,得,
a^2+b^2-2*ab*cosC=a^2+b^2-ab=c^2=4
由a-b=1得:b=a-1,代入上式,得:
a^2+(a-1)^2-a(a-1)=4
解得:a=(1+√13)/2(舍去了负根).
由正弦定理,得:a=c*sinA/sinC,b=c*sinB/sinC
故 bcosA+acosB=c*sin(A+B)/sinC=2
由A+B+C=180得:sin(A+B)=sinC,代入上式,得:c=2
由余弦定理,得,
a^2+b^2-2*ab*cosC=a^2+b^2-ab=c^2=4
由a-b=1得:b=a-1,代入上式,得:
a^2+(a-1)^2-a(a-1)=4
解得:a=(1+√13)/2(舍去了负根).