(1)证明: f ( x )+4=0即 x 2–( m +1) x + m +4="0. " 依题意:
又 A 、 B 锐角为三角形内两内角
∴
< A + B <π
∴tan( A + B )<0,即
∴
∴ m ≥5
(2)证明: ∵ f ( x )=( x –1)( x – m )
又–1≤cos α ≤1,∴1≤2+cos α ≤3,恒有 f (2+cos α )≤0
即1≤ x ≤3时,恒有 f ( x )≤0即( x –1)( x – m )≤0
∴ m ≥ x 但 x max=3,∴ m ≥ x max=3
(3)解:
∵ f (sin α )=sin 2α –( m +1)sin α + m =
且
≥2,
∴当sin α =–1时, f (sin α )有最大值8.
即1+( m +1)+ m =8,∴ m =3