解题思路:(1)将A与C坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式;
(2)求出抛物线与x轴的交点A与B坐标,利用图象即可确定出x的范围;
(3)求出AB的长,以及D纵坐标,利用三角形面积公式即可求出三角形ABD的面积.
(1)将A(-1,0)与C(0,3)代入二次解析式得:
−1−b+c=0
c=3,
解得:
b=2
c=3,
则二次函数解析式为y=-x2+2x+3;
(2)令y=0,得到-x2+2x+3=0,即(x-3)(x+1)=0,
可得x-3=0或x+1=0,
解得:x=3,或x=-1,
∴A(-1,0),B(3,0),
根据图象得:函数值y为正数时,自变量x的取值范围为-1<x<3;
(3)对于y=-x2+2x+3=-(x-1)2+4,得到顶点D(1,4),
则S△ABD=[1/2]AB•D纵坐标=[1/2]×4×4=8.
点评:
本题考点: 待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点.
考点点评: 此题考查了待定系数法求抛物线解析式,二次函数的性质,以及抛物线与x轴的交点,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.