解题思路:(1)利用三角形的中位线定理平移作出异面直线所成的角,再利用余弦定理即可求出;
(2)利用平行四边形、线面垂直的判定定理和性质即可得出.
证明:(1)取AB中点E,连接EF,DE
∵E,F分别是AB,PB的中点,
∴EF∥AP,
∴AP 和DF所成的角即为EF和DF所成的角,即∠DFE或其补角;
由已知四边形ABCD是正方形,
假设PD=DC=a,
则有DB=
2a,PB=
3a,DF=
3
2aAE=
a
2,DE=
5
2a,PA=
2a,EF=
2
2a
∴cos∠DFE=
DF2+EF2-DE2
2DF•EF=0,
∴DF⊥EF,∴DF⊥AP.
(2) G是AD的中点时,GF⊥平面PCB.
证明如下:取PC中点H,连接DH,HF.
∵PD=DC,∴DH⊥PC.
又∵BC⊥平面PDC,∴DH⊥BC,
∵DH⊥PC,DH⊥BC,PC∩BC=C,PC,BC⊂平面PBC
∴DH⊥平面PCB.
∵HF∥BC,且HF=
1
2BC,∴HF
∥
.GD,
∴四边形DGFH为平行四边形,DH∥GF,
∴GF⊥平面PCB.
点评:
本题考点: 直线与平面垂直的性质;直线与平面垂直的判定.
考点点评: 熟练掌握利用三角形的中位线定理及余弦定理求异面直线所成的角、线面垂直的判定定理和性质定理是解题的关键.