提公因式1*2*4和1*3*9得:
1*2*4(1^3+2^3+...n^3)/[1*3*9(1^3+2^3+...n^3)]^2
即:1*2*4(1^3+2^3+...n^3)/(1*3*9)^2*(1^3+2^3+...n^3)^2
=8(1^3+2^3+...n^3)/27^2*(1^3+2^3+...n^3)^2
上下消去(1^3+2^3+...n^3)得:8/729(1^3+2^3+...n^3)
又(1^3+2^3+...n^3)=[n(n+1)/2]^2,得:
原式=32/729[n(n+1)]^2