证明:
本题用均值无法解,因为无法构造均值条件.
但是用排序不等式却很简单:
不失一般性,因为a,b,c均为正数,可设:
a≤b≤c
易知:
2b+3c≥2c+3a≥2a+3b,即:
1/(2b+3c) ≤ 1/(2c+3a) ≤ 1/(2a+3b)
因此,构造:
顺序阵:a,b,c
1/(2b+3c) ,1/(2c+3a) ,1/(2a+3b)
乱序阵:b,c,a
1/(2b+3c) ≤ 1/(2c+3a) ≤ 1/(2a+3b).(1)
乱序阵:b,c,a
1/(2b+3c) ≤ 1/(2c+3a) ≤ 1/(2a+3b).(2)
乱序阵:c,a,b
1/(2b+3c) ≤ 1/(2c+3a) ≤ 1/(2a+3b).(3)
乱序阵:c,a,b
1/(2b+3c) ≤ 1/(2c+3a) ≤ 1/(2a+3b).(4)
乱序阵:c,a,b
1/(2b+3c) ≤ 1/(2c+3a) ≤ 1/(2a+3b).(5)
根据排序不等式:
由(1)可得:
a/(2b+3c) + b/(2c+3a) + c/(2a+3b) ≥ b/(2b+3c) + c/(2c+3a) + a/(2a+3b)
由(2),得:
a/(2b+3c) + b/(2c+3a) + c/(2a+3b) ≥ b/(2b+3c) + c/(2c+3a) + a/(2a+3b)
由(3),得:
a/(2b+3c) + b/(2c+3a) + c/(2a+3b) ≥ c/(2b+3c) + a/(2c+3a) + b/(2a+3b)
由(4),得:
a/(2b+3c) + b/(2c+3a) + c/(2a+3b) ≥ c/(2b+3c) + a/(2c+3a) + b/(2a+3b)
由(5),得:
a/(2b+3c) + b/(2c+3a) + c/(2a+3b) ≥ c/(2b+3c) + a/(2c+3a) + b/(2a+3b)
上述5个式子相加:
5[a/(2b+3c) + b/(2c+3a) + c/(2a+3b)] ≥ (2b+3c)/(2b+3c) + (2c+3a)/(2c+3a)+ (2a+3b)/(2a+3b)
=3
即:
a/(2b+3c) + b/(2c+3a) + c/(2a+3b) ≥ 3/5
当且仅当a=b=c时取等号
另:打字不易,