解题思路:第一次折叠,AC落在AB边上,则折痕AD平分∠BAC,∠EAD=∠FAD;
第二次折叠,A、D重合,则∠EAF=∠EDF、∠EDA=∠FDA;AE=ED、AF=FD;
易证得△AED≌△AFD,得AE=AF、DE=DF,再根据第二次折叠所得到的AE=DE、AF=FD,可证得四边形AEDF的四边相等,由此可判定四边形AEDF是菱形.
证明:由第一次折叠可知:AD为∠CAB的平分线,∴∠1=∠2(2分)
由第二次折叠可知:∠CAB=∠EDF,
∵AE=ED,AF=FD,
∴∠1=∠3,∠2=∠4,
∵∠1=∠2,
∴∠3=∠4(4分),
在△AED与△AFD中
∠1=∠2
AD=AD
∠3=∠4
∴△AED≌△AFD(ASA)(6分)
∴AE=AF,DE=DF,
∴EO=FO,AO=DO,AD⊥EF,
故四边形AEDF是菱形.(9分)
点评:
本题考点: 菱形的判定;全等三角形的判定与性质;翻折变换(折叠问题).
考点点评: 此题考查了折叠的性质、全等三角形的判定和性质及菱形的判定方法.