设[y+z/x]=[x+z/y]=[x+y/z]=k,
则:
y+z=kx(1)
x+z=ky(2)
x+y=kz(3),
(1)+(2)+(3)得:2x+2y+2z=k(x+y+z),
∵x+y+z≠0,
∴k=2,
∴原式=[2z−z/2z+z]=[z/3z]=[1/3].
设[y+z/x]=[x+z/y]=[x+y/z]=k,
则:
y+z=kx(1)
x+z=ky(2)
x+y=kz(3),
(1)+(2)+(3)得:2x+2y+2z=k(x+y+z),
∵x+y+z≠0,
∴k=2,
∴原式=[2z−z/2z+z]=[z/3z]=[1/3].