对于集合A={(x,y)|f(x^2)f(y^2)>f(1)},
假设有命题:两个数的乘积大于f(1),则至少有一个数大于f(1),
依题意知集合A中的x和y的取值范围有对称性,若f(x^2)f(y^2)>f(1)恒成立,那么我们就取两个数相等时使得f(x^2)f(y^2)>f(1),也即两个数f(x^2)与f(y^2)只有在都大于f(1)时(都小于1时显然不满足不等式),x和y既满足对称性也满足不等式,f(x)是减函数,因此x^2
对于集合A={(x,y)|f(x^2)f(y^2)>f(1)},
假设有命题:两个数的乘积大于f(1),则至少有一个数大于f(1),
依题意知集合A中的x和y的取值范围有对称性,若f(x^2)f(y^2)>f(1)恒成立,那么我们就取两个数相等时使得f(x^2)f(y^2)>f(1),也即两个数f(x^2)与f(y^2)只有在都大于f(1)时(都小于1时显然不满足不等式),x和y既满足对称性也满足不等式,f(x)是减函数,因此x^2