解题思路:(1)根据牛顿第二定律分别求出铁块和木板的加速度,抓住两者的位移之差等于木板的长度,通过匀变速直线运动的位移时间公式进行求解.
(2)铁块和木板之间的最大静摩擦力为2N,木板与地面间的最大静摩擦力为1N,当拉力小于1N,时,系统不动,铁块所受的摩擦力为静摩擦力,根据平衡求出静摩擦力的大小.当拉力大于1N小于某一值时,M、m系统具有相同的加速度,此时的摩擦力仍然为静摩擦力,根据牛顿第二定律求出静摩擦力的大小,当F大于某一值时,M与m发生相对滑动,此时的摩擦力为滑动摩擦力,根据滑动摩擦力的大小公式求出滑动摩擦力的大小.
(1)对铁块,由牛顿第二定律得:
F-μ2mg=ma1
对木板,由牛顿第二定律得,
μ2mg-μ1(M+m)g=Ma2
设木板的长度为L,经时间t铁块运动到木板的左端,则
s木=
1
2a2t2
s铁=
1
2a1t2
又s铁-s木=L
解得L=0.5m.
(2)①当F≤μ1(m+M)g=1N时,系统没有被拉动,静摩擦力与外力成正比,即
f=F.
②当F>μ1(m+M)g=1N时,若M、m相对静止,铁块与木板有相同的加速度a,则:
F-μ1(m+M)g=(m+M)a
F-f=ma
解得F=2f-1
此时:f≤μ2mg=2N,即F≤3N
所以当1N<F≤3N时,f=
F
2+0.5(N)
③当F大于3N时,M、m发生相对滑动,此时铁块所受的摩擦力为f=μ2mg=2N.
f-F的图象如图所示.
点评:
本题考点: 牛顿第二定律;匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系.
考点点评: 解决本题的关键能够正确地受力分析,运用牛顿第二定律进行求解.