已知a1=2,点(an,an+1)在函数f(x)=x^2+2x的图像上,其中n=1,2,3.

1个回答

  • (1)

    因为(an,an+1)在函数f(x)=x^2+2x的图象上

    an+1=an^2+2an

    1+an+1=an^2+2an +1=(1+an)^2

    lg(1+an+1)=2lg(1+an),(n>=1),所以{lg(1+an)}等比

    (2):已知a1=2,点(an,a(n+1))在函数f(x)=x的平方+2x的图像上,

    y=x^2+2x==>a(n+1)=an^2+2an

    ==>a(n+1)+1=an^2+2an+1

    ==>a(n+1)+1=(an+1)^2

    ∴当n=1,2,……n时有:

    a2+1=(a1+1)^2

    a3+1=(a2+1)^2=(a1+1)^4

    a4+1=(a3+1)^2=(a1+1)^8

    a5+1=(a4+1)^2=(a1+1)^16

    ………………

    an+1=(a1+1)^(2^(n-1))=(2+1)^(2^(n-1))=3^(2^(n-1))

    即:{an}的通项是:

    an=3^(2^(n-1))-1

    Tn=(1+a1)(1+a2)...(1+an)

    ==>(2+1)(3^2+1-1)(3^4+1-1).[3^(2^(n-1))+1-1]

    ==>3^(2(n-1))

    (3)bn=(1/an)+[1/a(n+2)]

    1/an=[1/(3^(2^(n-1))-1)]

    1/a(n+2)=1/(3^(2^(n-1))+1

    bn=(1/an)+[1/a(n+2)]=2*3^2^(n-1)/3^(2^n-1)

    sn=b1+b2+b3+.+1/[3^(2^(n-1))-1]+1/[3^(2^(n-1)+1]

    =1/2+1/4+1/8+.+1/[3^(2^(n-1))-1]+1/[3^(2^(n-1)+1]

    =1/2+1/4+(1/2((1/2-1/4)+1/10+1/2(1/8-1/10)+.

    ∴2sn=1/2+1/4+1/8+1/10+.2/[(3^(2^(n-1))+1]

    2sn=sn+1+1/[1/(3^(2^(n-1))-1)]+1/[(3^(2^(n-1))-1]

    sn=1 -2/[3^(2^n)-1]

    证明Sn+2/(3Tn-1)=1

    Tn=3^(2^n -1)

    3Tn=3^(2^n)

    3Tn -1=3^(2^n) -1

    2/(3Tn -1)=2/[3^(2^n) -1]

    ∴ Sn +2/(3Tn -1)=1 -2/[3^(2^n)-1] +2/[3^(2^n) -1]=1