已知函数f(x)的定义域为R,对任意实数m,n,满足f(1/2)=2,且f(m+n)=f(m)+f(n)-1,当x>-1

2个回答

  • (1)由题意可知:f(1/2)=f(1/4+1/4)=f(1/4)+f(1/4)-1=2

    得f(1/4)=1.5.

    f(1/4)=f(1/2-1/4)=f(1/2)+f(-1/4)-1

    f(-1/4)=f(1/4)-f(1/2)+1=0.5

    f(-1/2)=f(-1/4-1/4)=f(-1/4)+f(-1/4)-1=0

    (2)在定义域R中,设a>b,令a=b+c,此时必定有c>0.由题意可知

    f(a)=f(b+c)=f(b)+f(c)-1

    则f(a)-f(b)=f(c)-1

    又f(c)=f(c-1/2+1/2)=f(c-1/2)+f(1/2)-1=f(c-1/2)+1

    因c>0.故c-1/2>-1/2.即有f(c-1/2)>0

    所以

    f(a)-f(b)=f(c-1/2)+1-1=f(c-1/2)>0

    即在x的定义域内,当a>b时,恒有f(a)>f(b)

    所以f(x)为单调递增