解题思路:分切线的斜率存在和不存在两种情况求圆的切线方程,当斜率存在时,设出切线方程的点斜式,化为一般式后由圆心到直线的距离等于半径求k的值,则切线方程可求.
当直线的斜率不存在时,切线方程为x=2;
当直线的斜率存在时,设切线方程为y-2=k(x-2),即kx-y-2k+2=0.
由圆心(1,0)到切线的距离等于半径得:
|k−2k+2|
k2+1=1,解得,k=-[3/4].
切线方程为3x+4y-14=0.
∴点M(2,2)的直线l与圆(x-1)2+y2=1相切的直线方程是x=2或3x+4y-14=0.
点评:
本题考点: 圆的切线方程.
考点点评: 本题考查了圆的切线方程,求圆的切线方程,采用圆心到切线的距离等于圆的半径求解,考查了分类讨论的数学思想方法,是中档题.