是这么回事:
m的简约剩余系Z*中的余数a,总存在 b∈Z*,使得ab≡1(mod m),
即同余方程ax≡1(mod)总是有唯一解.a,b互称为对方的乘法逆元.
按通常的除法,方程的解写作x≡1/a(mod m),1/a按指数法就写为a^(-1).
1/a(mod m)在计算时是这么进行的:若c≡1(mod m),d≡a(mod),那么1/a≡c/d(mod m)
例如(mod7)1/5 ≡(14+1)/5≡3,即在模7中,5的逆元等于3.
或者(mod7)1/5 ≡(-6)/(-2)≡3
再如(mod29)1/22≡(-28)/(-7)≡4
(mod29)3/11≡3/(-18)≡1/(-6))≡30/(-6)≡-5≡24
但我后面不明白最后怎么成了(mod28),是不是键入错误?