都是正数
所以a+b>=2√ab
b+c>=2√bc
c+a>=2√ca
相乘
(a+b)(b+c)(c+a)>=8√(a^2b^2c^2)
即(a+b)(b+c)(c+a)>=8abc
要取等号则上面三个式子的等号同时取到
即a=b=c,不符合已知条件
所以等号取不到
8abc
都是正数
所以a+b>=2√ab
b+c>=2√bc
c+a>=2√ca
相乘
(a+b)(b+c)(c+a)>=8√(a^2b^2c^2)
即(a+b)(b+c)(c+a)>=8abc
要取等号则上面三个式子的等号同时取到
即a=b=c,不符合已知条件
所以等号取不到
8abc