相对论速度叠加公式我自己推导的错哪了?

2个回答

  • 速度加速度质量动量能量力的洛仑兹变换公式推导顺便都给你

    1

    首先给出坐标的洛仑兹变换公式

    x'=γ(x-vt) x=γ(x'+vt)

    y'=y y=y'

    z'=z z=z'

    t'=γ(t-vx/c^2) t=γ(t'+vx’/c^2)

    2

    推导速度的洛仑兹变换公式

    由t'=γ(t-vx/c^2) t=γ(t'+vx’/c^2)可知

    dt/dt'=1/γ(1-vUx/c^2)=γ(1+vUx'/c^2)此式备用

    Ux'=dx'/dt'=(dx'/dt)(dt/dt')

    dx'/dt=d[γ(x-vt)]/dt=γ(Ux-v)再带入(dt/dt')=1/γ(1-vUx/c^2)

    Ux'=γ(Ux-v)/γ(1-vUx/c^2)=(Ux-v)/(1-vUx/c^2)

    同理Uy'=Uy/γ(1-vUx/c^2)=Uy/γ(1-vUx/c^2)

    Uz'=Uz/γ(1-vUx/c^2)=Uz/γ(1-vUx/c^

    把v换成-v,带'与不带'的量互换就可以得到逆变换

    结论

    Ux'=(Ux-v)/(1-vUx/c^2) Ux=(Ux'+v)/(1+vUx'/c^2)

    Uy'=Uy/γ(1-vUx/c^2) Uy=Uy'/γ(1+vUx'/c^2)

    Uz'=Uz/γ(1-vUx/c^2) Uz=Uz'/γ(1+vUx'/c^2)

    3

    推导加速度的洛仑兹变换公式

    a_x'=dUx'/dt'=(dUx'/dt)(dt/dt')=

    {d[(Ux-v)/(1-vUx/c^2)]/dt}(dt/dt')=

    {[(dUx/dt)(1-vUx/c^2)-(Ux-v)(-dUx/dt)v/c^2)]/(1-vUx/c^2)^2}/γ(1-vUx/c^2)=a_x/γ^3(1-vUx/c^2)^3

    a_y'=dUy'/dt'=(dUy'/dt)(dt/dt')=

    {d[Uy/γ(1-vUx/c^2)]/dt}(dt/dt')=

    {[(dUy/dt)γ(1-vUx/c^2)-γUy(-dUx/dt)v/c^2)]/γ^2(1-vUx/c^2)^2}/γ(1-vUx/c^2)=[a_y+a_xUyv/(c^2-vUx)]/γ^2(1-vUx/c^2)^2

    同理a_z'=[a_z+a_xUzv/(c^2-vUx)]/γ^2(1-vUx/c^2)^2

    结论

    a_x'=a_x/γ^3(1-vUx/c^2)^3

    a_y'=[a_y+a_xUyv/(c^2-vUx)]/γ^2(1-vUx/c^2)^2

    a_z'=[a_z+a_xUzv/(c^2-vUx)]/γ^2(1-vUx/c^2)^2

    a_x= a_x'/γ^3(1+vUx'/c^2)^3

    a_y=[a_y'-a_x'Uy'v/(c^2+vUx')]/γ^2(1+vUx'/c^2)^2

    a_z=[a_z'-a_x'Uz'v/(c^2+vUx')]/γ^2(1+vUx'/c^2)^2

    4

    质量能量变换公式

    m=m0/(1-UU/cc)^(1/2)

    m'=m0/(1-U'U'/cc)^(1/2)

    m'=m(1-UU/cc)^(1/2)/(1-U'U'/cc)^(1/2)

    其中(1-U'U'/cc)=1-(Ux'Ux'+Uy'Uy'+Uz'Uz')

    带入速度变换公式可以得出

    (1-U'U'/cc)^(1/2)=(1-UU/cc)^(1/2)/γ(1-vUx/c^2)

    结论

    m'=m γ(1-vUx/c^2)

    m =m'γ(1-vUx/c^2)

    再由E=mc^2 E'=m'c^2可以得到

    E'=E γ(1-vUx/c^2)

    E =E'γ(1-vUx/c^2)

    5

    动量能量变换公式

    Px'=m'Ux'=mγ(1-vUx/c^2)*(Ux-v)/(1-vUx/c^2)=

    γ(mUx-mv)=γ(Px-Ev/c^2)

    Py'=m'Uy'=mγ(1-vUx/c^2)*Uy/γ(1-vUx/c^2)=Py

    Pz'=Pz

    E'=Eγ(1-vUx/c^2)=γ(E-EvUx/c^2)=γ(E-EvUx/c^2)=γ(E-vPx)

    结论

    Px'=γ(Px-Ev/c^2) Px=γ(Px'+E'v/c^2)

    Py'=Py Py=Py'

    Pz'=Pz Pz=Pz'

    E' =γ(E-vPx) E =γ(E'+vPx')

    6

    力的洛仑兹变换公式

    fx'=dPx'/dt=(dPx'/dt)(dt/dt')=[dγ(Px-Ev/c^2)/dt](dt/dt')=

    γ[dPx/dt-(v/c^2)dE/dt](dt/dt')

    dPx/dt是fx,dE/dt是fx的做功功率dE/dt=fxUx+fyUy+fzUz

    带入可得

    fx'=γ[fx-(v/c^2)(fxUx+fyUy+fzUz)]/γ(1-vUx/c^2)=

    fx-(fyUy+fzUz)v/(c^2-vUx)

    fy'=(dPy'/dt)(dt/dt')=(dPy/dt)(dt/dt')=fy/γ(1-vUx/c^2)

    fz'=(dPz'/dt)(dt/dt')=(dPz/dt)(dt/dt')=fz/γ(1-vUx/c^2)

    结论

    fx'=fx-(fyUy+fzUz)v/(c^2-vUx)

    fy'=fy/γ(1-vUx/c^2)

    fz'=fz/γ(1-vUx/c^2)

    fx= fx'+(fy'Uy'+fz'Uz')v/(c^2+vUx')

    fy= fy'/γ(1+vUx'/c^2)

    fz= fz'/γ(1+vUx'/c^2)