因为圆 M与直线AC至少有一个公共点C,且角MAC=30°
则从A点引到圆上的切线与圆相切于一点C‘ ∠MAC'≥30°
圆方程可化为(x-1)^2+(y-1)^2=4 M(1,1) r=2
设A的坐标(x,6-x)
MC'=r=2 AM=√[(x-1)^2+(6-x-1)^2]=√(2x^2-12x+26)
sin∠MAC'=MC'/AM 1/2≤sin∠MAC'
因为圆 M与直线AC至少有一个公共点C,且角MAC=30°
则从A点引到圆上的切线与圆相切于一点C‘ ∠MAC'≥30°
圆方程可化为(x-1)^2+(y-1)^2=4 M(1,1) r=2
设A的坐标(x,6-x)
MC'=r=2 AM=√[(x-1)^2+(6-x-1)^2]=√(2x^2-12x+26)
sin∠MAC'=MC'/AM 1/2≤sin∠MAC'