解题思路:(1)分别以A和D为圆心,AD为半径画弧,取在第一象限的交点E,连接AE、DE即可;
(2)根据等边三角形性质得出AD=AE,AO=AC,∠OAD+∠CAD=∠CAE+∠CAD=60°,推出∠OAD=∠CAE,根据SAS证△ACE≌△AOD,推出∠ACE=∠AOD即可;
(3)②FA平分∠OFE′是正确的,根据等边三角形性质推出△CAE′≌△OAD′,推出AN=AM,根据角平分线性质推出即可;根据等腰三角形的性质推出∠FAE′≠∠FAO,根据等边三角形性质推出∠E′AD′=∠CAO,即可推出①是错误的.
(1)如下图:分别以A和D为圆心,AD为半径画弧,取在第一象限的交点E,连接AE、DE,则三角形ADE是所求的等边三角形.
(2)∠ACE的大小不发生变化,总等于90°,
理由:
根据题意,有AD=AE,AO=AC,
∠OAD+∠CAD=∠CAE+∠CAD=60°,
∴∠OAD=∠CAE,
在△ACE和△AOD中
AE=AD
∠EAC=∠OAD
AO=AC,
∴△ACE≌△AOD(SAS)
∴∠ACE=∠AOD=90°,
即∠ACE的大小不发生变化,总等于90°.
(3)第二个结论②FA平分∠OFE′是正确的,
理由是:过A分别作AM⊥OD′于M,AN⊥CE′于N,
在△OAD′和△CAE′中
AE′=AD′
∠E′AC=∠D′AO
AO=AC,
∵△OAD′≌△CAE′(SAS),
∴CE′=OD′,
∴AM=AN(全等三角形的对应边上的高相等),
∵AN⊥CE′,AM⊥OD′,
∴∠AFN=∠AFM,
即FA平分∠OFE,∴②正确;
∵FE和OF不相等,
∴∠FAE不一定等于∠FAO,
∵∠EAD′=∠CAO=60°,
∴∠D′AF不一定等于∠FAC,
∴①错误;
即只有②正确.
点评:
本题考点: 等边三角形的性质;坐标与图形性质;角平分线的定义;全等三角形的判定与性质;作图—复杂作图;旋转的性质.
考点点评: 本题考查了对等边三角形的性质,坐标与图形性质,角平分线定义,作图-复杂图形,旋转性质,全等三角形的性质和判定等知识点的应用,此题综合性比较强,有一点难度,主要培养学生分析问题和解决问题的能力.