(1)是不是[i(i-1)]^2 + [x(i+1)]^2 = 0
如果是,2i + 2ix^2 = 0
x^2 = -1
x = ±i
(2)lim(n-->∞)[(1+2+2^2+...+2^(n-1)]/2^n = lim(n-->∞)[1*(1-2^n)/(1-2)]/2^n = lim(n-->∞)(2^n - 1)/2^n = 1
(1)是不是[i(i-1)]^2 + [x(i+1)]^2 = 0
如果是,2i + 2ix^2 = 0
x^2 = -1
x = ±i
(2)lim(n-->∞)[(1+2+2^2+...+2^(n-1)]/2^n = lim(n-->∞)[1*(1-2^n)/(1-2)]/2^n = lim(n-->∞)(2^n - 1)/2^n = 1