已知x1、x2是方程x²+x—4=0
则x1²+x1-4=0 x1²=4-x1
x2²+x2-4=0 x2²=4-x2
由韦达定理x1+x2=-1
x1*x2=-4
所以x1³—5x2²+10=x1*(4-x1)-5(4-x2)+10
=4x1-x1²-20+5x2+10
=4x1-(4-x1)+5x2-10
=5x1-4+5x2-10
=5(x1+x2)-14
=5*(-1)-14
=-19
已知x1、x2是方程x²+x—4=0
则x1²+x1-4=0 x1²=4-x1
x2²+x2-4=0 x2²=4-x2
由韦达定理x1+x2=-1
x1*x2=-4
所以x1³—5x2²+10=x1*(4-x1)-5(4-x2)+10
=4x1-x1²-20+5x2+10
=4x1-(4-x1)+5x2-10
=5x1-4+5x2-10
=5(x1+x2)-14
=5*(-1)-14
=-19