1/[b(n)b(n+1)]=1/[(2n-1)(2n+1)]=(1/2)*[1/(2n-1)-1/(2n+1)],
1/[b(1)b(2)]+1/[b(2)b(3)]+...+1/[b(n-1)b(n)]+1/[b(n)b(n+1)]
=(1/2)[1/1-1/3+1/3-1/5+...+1/(2n-3)-1/(2n-1)+1/(2n-1)-1/(2n+1)]
=(1/2)[1/1-1/(2n+1)]
=(1/2)[2n/(2n+1)]
=n/(2n+1)
1/[b(n)b(n+1)]=1/[(2n-1)(2n+1)]=(1/2)*[1/(2n-1)-1/(2n+1)],
1/[b(1)b(2)]+1/[b(2)b(3)]+...+1/[b(n-1)b(n)]+1/[b(n)b(n+1)]
=(1/2)[1/1-1/3+1/3-1/5+...+1/(2n-3)-1/(2n-1)+1/(2n-1)-1/(2n+1)]
=(1/2)[1/1-1/(2n+1)]
=(1/2)[2n/(2n+1)]
=n/(2n+1)