f'(x)=3x²-t
(1)若t≤0,则f'(x)≥0,所以 f(x)在R上是增函数,当然,在[0,1]上也是增函数;
(2)若t>0,令f'(x)≥0,解得x≤-(√3t)/3或x≥(√3t)/3,
即f(x)在(-∞,-(√3t)/3 ]和[(√3t)/3,+∞)上是增函数;
同理在[-(√3t)/3,(√3t)/3]上是减函数.
所以
①当0
f'(x)=3x²-t
(1)若t≤0,则f'(x)≥0,所以 f(x)在R上是增函数,当然,在[0,1]上也是增函数;
(2)若t>0,令f'(x)≥0,解得x≤-(√3t)/3或x≥(√3t)/3,
即f(x)在(-∞,-(√3t)/3 ]和[(√3t)/3,+∞)上是增函数;
同理在[-(√3t)/3,(√3t)/3]上是减函数.
所以
①当0