f(x)=-x-In(-x)+In(-x)/x
f'(x)=-1-1/x+(1-ln(-x))/x^2,x=-e为驻点.
f''(x)=1/x^2+(-x-2x(1-ln(-x))/x^4
=1/x^2+(-1-2(1-ln(-x))/x^3
f''(-e)>0,故x=-e为极小值点,当x趋于0-时,f(x)趋于正无穷,
所以:当-e
f(x)=-x-In(-x)+In(-x)/x
f'(x)=-1-1/x+(1-ln(-x))/x^2,x=-e为驻点.
f''(x)=1/x^2+(-x-2x(1-ln(-x))/x^4
=1/x^2+(-1-2(1-ln(-x))/x^3
f''(-e)>0,故x=-e为极小值点,当x趋于0-时,f(x)趋于正无穷,
所以:当-e