解法一(均值不等式):
1/x+1/y
=1·(1/x+1/y)
=(4x+9y)(1/x+1/y)
=13+4x/y+9y/x
≥13+2√[(4x/y)(9y/x)]
=25,
故(1/x+1/y)|min=25.
此时,4x/y=9y/x且4x+9y=1,
即x=1/10,y=1/15.
解法二(Cauchy不等式):
(4x+9y)(1/x+1/y)≥(2+3)²
→1/x+1/y≥25,
∴(1/x+1/y)|min=25.
此时,4x:1/x=9y:1/y且4x+9y=1,
即x=1/10,y=1/15.
解法三(权方和不等式):
1/x+1/y
=2²/4x+3²/9y
≥(2+3)²/(4x+9y)
=25.
∴(1/x+1/y)|min=25.
此时,同样易得,
x=1/10,y=1/15.