1.y=cosx+sinx=√2sin(x+π/4) x属于R
因为 sin(x+π/4) [-1,1],因此:
值域为:[-√2,√2]
2.y=sinx-cosx+1
=√2sin(x-π/4)+1
因此:
值域为:[1-√2,1+√2]
3.y=cosx/(2cosx+1) (x≠2nπ+2π/3,2nπ-2π/3)
={2[cos(x/2)]^2-1} /[2cos(x/2)^2]
=1 - 1/[2cos(x/2)^2]
因此求得值域为:(-∞,1)
但是当y=1时,求得x=2nπ+π,即是可以等于1,所以把1加上并结合定义域可得真正的值域为:
(-∞,1]