解题思路:(1)在Rt△ADE中,解直角三角形即可;
(2)在△AED向右平移的过程中:
(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为一个三角形;
(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为一个四边形;
(III)当4.5<t≤6时,如答图3所示,此时重叠部分为一个五边形.
(3)根据旋转和等腰三角形的性质进行探究,结论是:存在α(30°和75°),使△BPQ为等腰三角形.如答图4、答图5所示.
(1)∵四边形ABCD是平行四边形,
∴AD=BC=6.
在Rt△ADE中,AD=6,∠EAD=30°,
∴AE=AD•cos30°=3
3,DE=AD•sin30°=3,
∴△AED的周长为:6+3
3+3=9+3
3.
(2)在△AED向右平移的过程中:
(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.
∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0÷tan30°=
3t,
∴S=S△D0NK=[1/2]ND0•NK=[1/2]t•
3t=
3
2t2;
(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.
∵AA0=2t,∴A0B=AB-AA0=12-2t,
∴A0N=[1/2]A0B=6-t,NK=A0N•tan30°=
点评:
本题考点: 几何变换综合题.
考点点评: 本题考查了运动型与几何变换综合题,难度较大.难点在于:其一,第(2)问的运动型问题中,分析三角形的运动过程,明确不同时段的重叠图形形状,是解题难点;其二,第(3)问的存在型问题中,探究出符合题意的旋转角,并且做到不重不漏,是解题难点;其三,本题第(2)问中,计算量很大,容易失分.