已知:如图,梯形ABCD中,DC∥AB,AD=BC,对角线AC、BD交于点O,∠COD=60°,若CD=3,AB=8,求

1个回答

  • 解题思路:过点C作CE∥DB,交AB的延长线于点E,过点C作CH⊥AE于点H,根据等腰梯形的性质可知,AC=BD,由CE∥DB,DC∥AB,可知四边形DCEB为平行四边形,CD=BE=3,又∠COD=60°,故∠ACE=60°,△ACE为等边三角形,边长为AB+BE=11,解Rt△ACH可求高CH.

    过点C作CE∥DB,交AB的延长线于点E

    ∴∠ACE=∠COD=60°

    又∵DC∥AB,∴四边形DCEB为平行四边形

    ∴BD=CE,BE=DC=3,AE=AB+BE=8+3=11

    又∵DC∥AB,AD=BC,

    ∴DB=AC=CE

    ∴△ACE为等边三角形

    ∴AC=AE=11,∠CAB=60°

    过点C作CH⊥AE于点H.在Rt△ACH中,CH=AC•sin∠CAB=11×

    3

    2=

    11

    3

    2

    ∴梯形ABCD的高为

    11

    3

    2.

    点评:

    本题考点: 梯形.

    考点点评: 本题考查了梯形的性质,解题的关键是平移一条对角线,两条对角线与上、下底的和构成三角形,再根据梯形的条件解这个三角形求高或者求梯形的面积.