解题思路:根据折叠的性质得到∠E=∠ACB,∠BAE=∠BAC,∠ACB=∠ACD,则∠ACD=∠E,利用三角形的内角和相等得到∠ACD+∠CAE=∠E+∠θ,则∠EAC=∠θ=50°,所以∠BAE+∠BAC=360°-50°=310°,即可得到∠BAC的度数.
∵△ABE是△ABC沿着AB边翻折180°形成的,
∴∠E=∠ACB,∠BAE=∠BAC,
又∵△ACD是△ABC分别沿着AC边翻折180°形成的,
∴∠ACB=∠ACD,
∴∠ACD=∠E,
而∠ACD+∠CAE=∠E+∠θ,
∴∠EAC=∠θ=50°,
∴∠BAE+∠BAC=360°-50°=310°,
∴∠BAC=155°.
故答案为155°.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及周角的定义.