裂项相消法.
1/[n(n+2)]=1/2*[1/n-1/(n+2)] ,
所以原式=1/2*[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+.+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
=1/2*[1+1/2-1/(n+1)-1/(n+2)]
=n(3n+5) / [4(n+1)(n+2)] .
裂项相消法.
1/[n(n+2)]=1/2*[1/n-1/(n+2)] ,
所以原式=1/2*[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+.+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
=1/2*[1+1/2-1/(n+1)-1/(n+2)]
=n(3n+5) / [4(n+1)(n+2)] .