i)设切线斜率为k,则切线方程为y-3=k(x-2)
即kx-y+3-2k=0
则圆心(0,0)到切线kx-y+3-2k=0的距离:
d=|3-2k|/√[k²+1]=2
解得k=5/12
切线方程为5x-12y+26=0.
ii)另一条切线斜率不存在,为x=2.
综上,切线方程为5x-12y+26=0或x=2
i)设切线斜率为k,则切线方程为y-3=k(x-2)
即kx-y+3-2k=0
则圆心(0,0)到切线kx-y+3-2k=0的距离:
d=|3-2k|/√[k²+1]=2
解得k=5/12
切线方程为5x-12y+26=0.
ii)另一条切线斜率不存在,为x=2.
综上,切线方程为5x-12y+26=0或x=2