证明:
a1^2+a2^2+a3^2=(a1+a2)^2-2a1a2+a3^3=(a1+a2+a3)^2-2(a1+a2)a3-2a1a2
=(a1+a2+a3)^-2(a1a3+a2a3+a1a2)
=(b1+b2+b3)^2-2(b1b2+b1b3+b2b3)
=(b1+b2)^2+2(b1+b2)b3+b3^2-2(b1b2+b1b3+b2b3)
=b1^2+2b1b2+b2^2+2b1b3+2b2b3+b3^2-2b1b2-2b1b3-2b2b3
=b1^2+b2^2+b3^2
证明:
a1^2+a2^2+a3^2=(a1+a2)^2-2a1a2+a3^3=(a1+a2+a3)^2-2(a1+a2)a3-2a1a2
=(a1+a2+a3)^-2(a1a3+a2a3+a1a2)
=(b1+b2+b3)^2-2(b1b2+b1b3+b2b3)
=(b1+b2)^2+2(b1+b2)b3+b3^2-2(b1b2+b1b3+b2b3)
=b1^2+2b1b2+b2^2+2b1b3+2b2b3+b3^2-2b1b2-2b1b3-2b2b3
=b1^2+b2^2+b3^2