证明:作BM⊥AC于点M
则∠AMB=∠AEC=90°
∵∠BAM=∠CAE
∴△ABM∽△ACE
∴AB*AE=AM*AC
∵∠BCM=∠CAE
易得△BCM∽△CAF
∴BC*AF=CM*AC
∴AB*AE+BC*AF=AM*AC+CM*AC=AC(AM+CM)=AC²
证明:作BM⊥AC于点M
则∠AMB=∠AEC=90°
∵∠BAM=∠CAE
∴△ABM∽△ACE
∴AB*AE=AM*AC
∵∠BCM=∠CAE
易得△BCM∽△CAF
∴BC*AF=CM*AC
∴AB*AE+BC*AF=AM*AC+CM*AC=AC(AM+CM)=AC²