由已知
|m|=1,|n|=√(3-2√2sinb),m.n=√2cosb
|m+n|=√(1+3-2√2sinb+2√2cosb)
=√(4-4sin(b-π/4))
已知π≤b≤3π/2,得3π/4≤b-π/4≤5π/4
-√2/2 《sin(b-π/4)《√2/2
所以|m+n|的最大值√(4+2√2)
若|m+n|=4根号10/5,求sin2b
|m+n|=√(4-4sin(b-π/4))=4根号10/5
得sin(b-π/4)=-3/5
则 sin2b=cos(2b-π/2)=1-2sin(b-π/4)^2
=1-2(-3/5)^2
= 7/25
所以 sin2b=7/25