解题思路:(1)根据题意可知tan∠BAC=3,所以可求得点C的坐标,根据待定系数法,即可求得二次函数的解析式;
(2)因为点P在抛物线上,所以可求得m的值,即可求得直线l的解析式,根据题意可得点Q在直线x=1上,可知点Q在抛物线的对称轴上,有两点间线段最短可知直线AP与抛物线的对称轴的交点即是点Q;求得AP的值即可;
(3)可首先求得△APM的最大值,利用图形面积的拼凑方法即可求得,再根据面积公式求得h的最大值即可.
(1)∵tan∠BAC=3,
∴[OC/OA]=[OC/1]=3,
∴OC=3,
∴点C的坐标为(0,3),
∴t=3,
将点A、B、C的坐标代入二次函数解析式得:
a−b+c=0
9a+3b+c=0
c=3,
解得:
a=−1
b=2
c=3,
∴此抛物线的解析式为y=-x2+2x+3;
(2)∵点P(2,m)在抛物线上,
∴m=3,
∴点P的坐标为(2,3),
∴3=3k,
∴k=1,
∴直线l的解析式为y=x+1,
∵y=-x2+2x+3=-(x-1)2+4,
∴此函数的对称轴为x=1,
∴点Q在抛物线的对称轴上,
∴点B关于对称轴的对称点为点A,
∴设直线AP的解析式为y=kx+b,
∴
−k+b=0
2k+b=3,
∴
点评:
本题考点: 二次函数综合题.
考点点评: 此题考查了二次函数的综合应用,要注意待定系数法球函数的解析式,还要注意利用二次函数求最大值,注意数形结合思想的应用.