解题思路:根据已知中圆环的面积等于是以线段AB=R-r为宽,以AB中点绕圆心O旋转一周所形成的圆的周长2π×[R+r/2]为长的矩形面积.拓展到空间后,将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,则所形成的旋转体的体积应等于:以圆(x-d)2+y2=r2为底面,以圆心(d,0)绕y轴旋转一周形成的圆的周长2π×d为高的圆柱的体积.代入可得答案.
由已知中圆环的面积等于是以线段AB=R-r为宽,
以AB中点绕圆心O旋转一周所形成的圆的周长2π×[R+r/2]为长的矩形面积.
拓展到空间后,将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,
则所形成的旋转体的体积应等于:
以圆(x-d)2+y2=r2为底面,以圆心(d,0)绕y轴旋转一周形成的圆的周长2π×d为高的圆柱的体积.
故V=πr2•2πd=2π2r2d,
故选:B
点评:
本题考点: 旋转体(圆柱、圆锥、圆台).
考点点评: 本题考查的知识点是圆柱的体积,类比推理,其中得到拓展到空间后,将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,则所形成的旋转体的体积应等于:以圆(x-d)2+y2=r2为底面,以圆心(d,0)绕y轴旋转一周形成的圆的周长2π×d为高的圆柱的体积.是解答的关键.