令M点为(a,0)N点为(0,b)
线段MN的方程为:y=(-b/a)*X+b
由ON=2AM,得
b=2(4-a)
b=8-2a
1、由△ODN≌ODA得
ON=OA
解得b=4,则a=2
MN的直线方程为
y=-2x+4,4>X>0,8>y>0
当X=1时,y=2
X=2时,y=0
X =3时,y=-2(舍去)
则线段MN上有两个整数点,分别是(1,2)(2,0)
2、直线OD的方程为:y=x
联立直线OD与线段MN的方程,解得交点D为(ab/(a+b),ab/(a+b)),
由OD=DM得,△OMD为等腰直角三角形,过D做DQ垂直于X轴
则OM=2OQ
a=2ab/(a+b),联立b=8-2a
得a=b=8/3
则MN的方程为:y=-X+8/3
则△OMN中整数点为(0,0)(1,0)(2,0)(0,1)(0,2)(1,1)(2,2)共7个
3、点D为(ab/(a+b),ab/(a+b)),
令ab/(a+b)=1,联立b=8-2a得
2a^2-9a+8=0,可判断有解
a1=(9+√17)/4,a2=(9-√17)/4
令ab/(a+b)=2,联立b=8-2a得
a^2-5a+16=0,可判断无解
令ab/(a+b)=3,联立b=8-2a得
2a^2-11a+24=0,可判断无解
则D有可能为整数点(1,1)
此时OM=a=(9±√17)/4,