解题思路:(1)根据折射线与反射线的关系,作出∠3=∠4即可得到反射光线CD;
(2)由∠1=∠2,根据平角的定义得到∠ABC=180°-2∠2,由∠3=∠4,根据等角的余角相等得∠BCE=∠DCF,再根据平角的定义得到∠BCD=180°-2∠BCE,由于MN∥EF,根据两直线平行,内错角相等得到∠2=∠BCE,利用等量代换有∠ABC=∠BCD,然后根据内错角相等,两直线平行可得AB∥CD.
(1)如图
,∠3=∠4,CD为所求;
(2)AB与CD的平行.理由如下:
∵∠1=∠2,
∴∠ABC=180°-2∠2,
∵光线BC经镜面EF反射后的反射光线CD,
∴∠3=∠4,
∴∠BCE=∠DCF,
∴∠BCD=180°-2∠BCE,
∵MN∥EF,
∴∠2=∠BCE,
∴∠ABC=∠BCD,
∴AB∥CD.
点评:
本题考点: 平行线的判定与性质.
考点点评: 本题考查了平行线的性质与判定:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.