lim(x->0) [ln(1+x)+ln(1-x)]/(ex^2-1) (0/0)
=lim(x->0) [1/(1+x)-1/(1-x)]/(2xex^2) (0/0)
= lim(x->0) [-1/(1+x)^2-1/(1-x)^2]/(2ex^2+ 4x^2ex^2)
= (-1-1)/(2+0)
=-1
lim(x->0)[ 2e^(2x)-e^(x)-3x-1]/[e^(x)]^2
=(2-1-3-1)/1
=-5
lim(x->0) [ln(1+x)+ln(1-x)]/(ex^2-1) (0/0)
=lim(x->0) [1/(1+x)-1/(1-x)]/(2xex^2) (0/0)
= lim(x->0) [-1/(1+x)^2-1/(1-x)^2]/(2ex^2+ 4x^2ex^2)
= (-1-1)/(2+0)
=-1
lim(x->0)[ 2e^(2x)-e^(x)-3x-1]/[e^(x)]^2
=(2-1-3-1)/1
=-5