一个函数证明题设f(x)在[0,1]上单调递增且连续,f(0)>0,f(1)<1,试证:存在y∈(0,1),使f(y)=
1个回答
证明、
设g(x)=f(x)-x2,在[0,1]上连续
g(0)=f(0)>0
g(1)=f(1)-1
相关问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=f(0)=0,f(1/2)=1,试证:至少存在一个§€(0
设f(x)在[0,1]上二阶可导,且f(0)=f(1),试证:至少存在一个§属于(0,1),使f''(§)=2f'(§)
一道证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明存在t属于(0,1),使f'(
1.函数f(x)在[0,1]连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,试证:
设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f([1/2])=1,试证明至少存在一点ξ
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0)=f(x0)+1/4
设f(x)在[0,1]上连续且可导,又f(0)=0,0≤f'(x)≤1 试证:[ ∫^(0,1)f(x)dx]^2≥∫^
设函数f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x属于【0,1/2】,使得f(x)=f(x+1/2
设函数f(x)是定义在(0,+∞)上的单调递增函数,f (x)=f(x/y)+f(y),f(3)=1,证明f(x)+f(
设严格单调函数y=f(x)有二阶连续导数,f(0)=0,其反函数x=§(y),且f(1)=1